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Recurrence and Return Times of the Sierpinski Carpet 
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We compute the limit distribution of the recurrence and of the normalized kth 
return times to small sets of the Sierpinski carpet with respect to a natural 
measure defined on it. It is proved that this dynamical system follows the 
Poisson law, as one could have expected for such schemes. We study different 
sequences which converge in finite distribution to the Poisson point process. 
This limit in law is very interesting in ergodic theory, and it seems to appear for 
chaotic dynamical systems such as the one we study. 
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1. INTRODUCTION 

We s tudy the recur rence  and the re turn  t imes of  orbi ts  of  po in ts  of  a 

d y n a m i c a l  system, the Sierpinski  carpet. In  p robab i l i ty  theory,  one  may  
ob ta in  at the l imit  in d i s t r ibu t ion  of  some  processes  n o r m a l  laws or  
Po isson  laws. Recen t  works  by Sinai '17'81 for the q u a n t o m  kicked  r o t a t o r  

mode l  and by H i r a t a  ~21 for A x i o m  A d i f f eomorph i sms  show that  the 

Poisson law property  holds. It  seems that  one  cou ld  expect  to ob t a in  s imilar  

results for chao t i c  d y n a m i c a l  systems (Bernoul l i ,  mixing,. . .)  which are very 

in teres t ing  in e rgod ic  theory.  Here  we p rove  that  the Po isson  law p rope r ty  

holds  a lmos t  eve rywhere  with respect  to a na tura l  measu re  def ined on  the 

Sierpinski  carpet .  See also ref. 5 for a n a l o g o u s  results. 
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2. THE M O D E L  

We prove the Poisson law limit for the Sierpinski carpets equipped 
with natural measures. Sierpinski carpetd 4' 6~ are fractal planar sets S which 
are generalized Cantor  sets. Given integers n/> m and a set 

S c  {(i,j)/O<~i<n and 0 ~ < j < m }  

with # ( S ) = p ,  we define in dimension 2 the fractal set S by 

k>~l nk'k>~l 

We define then a natural measure # on the square [-0, 1] 2 by giving 
values only to the rectangles defining S: the rectangles Vk have the 
measures 

/~(Vk) = 0h (2) 

as measured by # (the other rectangles have measure 0). By refining this 
method, we construct a measure # on S. 

Actually, if (fk)k = 1,.... p represent affine maps contracting by a factor of 
n horizontally and m vertically, i.e., for k which corresponds to a pair 
(i , j)ES, 

f k ( x , y ) = ( i + x ,  j+ '~)  for ( x , y ) ~ [ 0 , 1 ]  2 (and fl v~ := fk) 

(and f - 0  on the other rectangles), we have then 

u 
k = l  j I {il.....il} 

and # is invariant with respect to f and the fk. We also define a map 

~o: Sp=  {1,2 ..... p} ~'--* S 

(il, i2,-..)-* ~ f, . ,f~,. . .f~,([0, 1-] 2) (3) 
j ~ > l  

which is a surjection; moreover,  it is bounded-to-one and one-to-one on a 
set of Lebesgue measure 1 and of # measure I. The measure # satisfies 

k k 

#[q~(i,, i2 ..... ik)]=P(i, , i2 ..... ik) = I-[ /2(V~) = l- I 0ij (4) 
j = l  j = l  
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where the measure p is defined on symbolics. By the Kolmogorov con- 
sistency theorem, we take/a to be the unique measure on the Borel subsets 
of S satisfying (4). We introduce the cylinders C(n, _y) for n t> 1 on Sp 

C(n, _y) = {x ~ Sp/xl = Yl ;...; x ,  = y,} 

and the shift a by tr(x_)=_yc~Vne~*, y,,=x,+~. 
Obviously the map q~ assures a correspondance between the two 

dynamical systems (S,/~, f )  and (Sp, p, a) (thermodynamic formalism TM zl), 
i.e., 

# = q~*p and Vne~,  f"oq~=q~otr" 

Following ref. 2, we define for a point y ~ S and an e-neighborhood 
U~(y) 

/21U~(y) 
la~ i.t(U.(y)) 

which is the induced measure and the kth return of a point x from U,(y) 
to U,(y) by Tl~kl,(x). We introduce a counting measure on R + by 

y , ( y ) =  ~ 6r~!,.~xvE, trc)%~n (5) 
k~>l 

and for B ~ ( f f ~ + ) ,  Y~(B) is the number of times that the normalized 
return times lie in B. In many situations it turns out that the limit distribu- 
tion is actually a Poisson point process, and we prove /~-a.e. this Poisson 
law property for the Sierpinski carpet. 

We introduce the recurrence to small sets, which is the amount of time 
that the orbits of a point x~ U,(y) spend in U~(y). To this purpose, let 

W~(y)= y '  l Iu~t,.~lof j where c t , -  Ill (6) 
j=o Eu[T~..,.(x)] 

Our main result is that the random variables Y,(y) and W,(y) tend 
for #-a.e. y e S respectively to the Poisson point process and the Poisson 
law, and the result does not hold for any point: for example, the ones 
which have a periodic symbolic expansion. This is given in the following 
results. 

T h e o r e m  1. The random variables W,[y] converge for/a-a.e, y e S  
when e goes to 0 to the Poisson law ~(1).  
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T h e o r e m  2. For  /~-a.e. y ~ S  the limit distribution of the random 
variables Y j y )  is the Poisson point process, i.e., for any disjoint Borel sets 
BI, B2 ..... B u ~ ~ ( R  +) and any nonnegative integers k~ ..... k u we get 

lim I . t~(Y~.[y](B,)=k,  ..... Y~.[v](Bq)=k, , )  f i  
2(B,.) k, 

�9 . , . = _ _ e - 2 ( B , )  

~-o i=, ki! 

R e m a r k s .  1. The results are also valid for dynamical  systems 
equipped with Markovian  measures and associated to symbolics which are 
Markov  chains. 

2. We prove that periodic points do not satisfy Theorem 1. Hira ta  
proved (2~ that  for these points the limit distribution of the normalized first 
return time is a combinat ion  of the delta distribution and the exponential  
distribution. 

3. What  happens if we take shift-invariant measures which can be 
approximated  weakly and in ent ropy by Markov  measures (ref. 3, 
Appendix 1 )? 

We have a similar result for the symbolic dynamical  system (Sp, p, ~r), 
which is strongly mixing (and therefore ergodic) since it is a Bernoulli shift. 
It has then a chaotic behavior  and has the Poisson law property'. The small 
sets U~(y) are replaced for )_,ESp by small cylinders C(n,_y); the return 
times for _x ~ C(n, Z) are 

(k+~)X - i n f { i  T ~k~ i (o~ _ T .... = ( _ ) -  > .... ~ (x ) /a (x - )eC(n ' -Y )}  where T,,,._,.(=,c)-0 (7) 

Let (W,(_y)),~> ~ be the sequence of r andom variables defined for any )_, ~ Sp 
by 

[~.]- 1 l 
�9 ~ ( I )  1 _ W . ( y ) =  )" l lcv,._,.l}oo" where 0b,=Ep,[l,,.._~,j p(C(n,  y))  

j = 0  

The induced measures p,, satisfy 

P,, 

We get then the following result. 

(8) 

P I c i n  v) 

p(C(n, 3,)) 

Theorem 3. The sequence (W,,()_,)),,>~I converges in distribution 
when n goes to + oo for p-a.e, point _y e Sp to the Poisson law ~'(1). 

R e m a r k s .  1. If we take any real 2 > 0, we get for p-a.e. _y e Sp 

[2~,,] - 1 

C,,(Y) Z l {c(n..,')l aj = o , # ( 2 )  (9) 
- -  _ n ~  + o o  

j =  0 
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. 

we get 

i.e., 

We may replace 2 by 2,,--*0 such that 2,,p(C(n, _y))---, + oo, and 

[ ; . .~.]- 1 
~,,(_Y)= Z l lc~,,.,.~o(rJ~(2.) 

j=  0 

�9 (L , )  ~ 
VkEr~, p(~,,(_y)=k).~e-"" k! (10) 

Theorem 4. 
where 

Similarly to Theorem 2, we prove also the following result. 

For any real t > 0  the sequence (N,,[_y]([0;t])),~>x, 

N , , [ _ _ V ] ( [ O ; t ] ) =  ~ l lp ,  c , ..... ~ l r ~ , ~ , l  
k ~ > l  

converges in distribution for p-a.e, yeSp to the Poisson law ~(t). 

Remark .  We can easily generalize in the following way: for p-a.e. 
_y~Sp and for any disjoint Borel sets B t ,  B,_ ..... B q 6 , . ~ ( ~  + ) and for any 
nonnegative integers k~, k2 ..... kq we get 

lim p,,(N,,[y](Bl)=kl;...;N,,[y](Bq)=kq)= fl  2(B~)k'e-~48'~ (11) 
n ~ + o c  - - i = 1  ki! 

which means that the limits in distribution of the N.[y](Bi)  are indepen- 
dant Poisson laws of parameters 2(Bi), the Lebesgue measure of Bi. 
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